Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3
نویسندگان
چکیده
The effects of laser irradiation on γ-Fe2O3 4 ± 1 nm diameter maghemite nanocrystals synthesized by co-precipitation and dispersed into an amorphous silica matrix by sol-gel methods have been investigated as function of iron oxide mass fraction. The structural properties of γ-Fe2O3 phase were carefully examined by X-ray diffraction and transmission electron microscopy. It has been shown that γ-Fe2O3 nanocrystals are isolated from each other and uniformly dispersed in silica matrix. The phase stability of maghemite nanocrystals was examined in situ under laser irradiation by Raman spectroscopy and compared with that resulting from heat treatment by X-ray diffraction. It was concluded that ε-Fe2O3 is an intermediate phase between γ-Fe2O3 and α-Fe2O3 and a series of distinct Raman vibrational bands were identified with the ε-Fe2O3 phase. The structural transformation of γ-Fe2O3 into α-Fe2O3 occurs either directly or via ε-Fe2O3, depending on the rate of nanocrystal agglomeration, the concentration of iron oxide in the nanocomposite and the properties of silica matrix. A phase diagram is established as a function of laser power density and concentration.
منابع مشابه
Direct amine-functionalisation of γ-Fe2O3 nanoparticles.
A novel and simple preparation of amine-modified γ-Fe2O3 nanoparticles is described. The presence of amine groups on the surface, instead of hydroxyl groups, will allow conjugation of biologically active molecules to the iron oxide nanoparticles without the need for a size increasing silica shell. Furthermore, the outer amine-layer increases the temperature of the γ-Fe2O3 to α-Fe2O3 structural ...
متن کاملZeta-Fe2O3 – A new stable polymorph in iron(III) oxide family
Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ε-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in re...
متن کاملCharacterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3
Nano crystals of γ-Fe2O3 (maghemite) were synthesized by emulsion precipitation method using kerosene as oil phase, SPAN80 (sorbitane monooleate) as the surfactant and sodium hydroxide as the precipitating agent. The characterization of the samples by FTIR (Fourier transform infra-red) and XRD (X-ray diffraction) techniques confirmed the formation of γ-Fe2O3 (maghemite). Analysis by SEM (scanni...
متن کاملSono-synthesis of Novel Magnetic Nanocomposite (Ba-α-Bi2O3-γ-Fe2O3) for the Solar Mineralization of Amoxicillin in an Aqueous Solution
In this study, a novel magnetic nanocomposite (Ba-α-Bi2O3-γ-Fe2O3) was successfully synthesized through a combination of ultrasound and co-precipitation method under mild conditions. The structure of the synthesized nano-composite as a visible light photocatalyst was investigated by the XRD, TEM, HRTEM, UV-vis and FT-IR. The HRTEM confirmed that the nano-magnetic composites are rods with diamet...
متن کاملThe effect of Fe2O3 crystal phases on CO2 hydrogenation
The effect of Fe2O3 crystal phases on their performance in CO2 hydrogenation was studied. α-Fe2O3 crystal was prepared by precipitation method from Fe(NO3)3·9H2O and (NH4)2CO3, and γ-Fe2O3 was prepared by grinding Fe(NO3)3·9H2O and L(+)-Tartaric acid in agate mortar completely. The crystal phases of Fe2O3 influence the distribution of promoter Zn, K and Cu on catalysts. The dispersity of K on γ...
متن کامل